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This paper reports an experimental and theoretical study of the compressive behavior of single microcap-
sules; that is, liquid-filled cellular entities~approximately 65mm in diameter! with a thin polymeric membrane
wall. An experimental technique which allows the simultaneous measurement of both the compressive dis-
placement and the reaction forces of individual microcapsules deformed between two parallel plates up to a
dimensionless approach@~compressive displacement!/~initial particle diameter!# of 60% is described. The cor-
responding major geometric parameters of the deformed microcapsule, such as central lateral extension as well
as the failure phenomena, are reported and recorded through a microscopic visualization system. The elastic
modulus, the bursting strength of the membrane, and the pressure difference across the membrane are com-
puted by using a theoretical analysis which is also presented in this paper. This theoretical model, which was
developed by Feng and Yang@J. Appl. Mech.40, 209 ~1973!# and then modified by Lardner and Pujara@in
Mechanics Today, edited by S. Nemat-Nasser~Pergamon, New York, 1980!, Vol. 5#, considers the deformation
of a nonlinear elastic spherical membrane which is filled with an incompressible fluid. The predictions of the
theory are consistent with the experimental observations.@S1063-651X~96!05011-8#

PACS number~s!: 87.22.2q, 68.45.2v, 07.10.Cm

I. INTRODUCTION

Microcapsules, that is, liquid-filled cells with thin mem-
brane walls, are now used in the pharmaceutical, agriculture,
and food industries, as well as in biotechnology industries
for a wide range of applications from drug delivery to the
construction of synthetic cells for artificial organs and artifi-
cial blood. The mechanical properties of these synthetic mi-
crocapsules have been recognized as being important not
only for determining the kinetics of the release of encapsu-
lated chemicals but also for controlling the durability of the
products during processing and in use. The process of com-
pacting microcapsules via compression is considered as a
convenient method for assembling microcapsule particles
into a dosage form. However, the individual particles must
exhibit sufficient physical integrity in order to withstand pro-
cessing while maintaining the required drug release profile in
their final dosage form@1#. Moreover, some studies@2,3#
have shown the pressure difference across the wall mem-
brane may be one of the critical factors which affects the rate
of drug release from tableted microcapsules. In addition, de-
formable liquid-filled microcapsules exist pervasively in
natural biological systems in many and various forms. Some
authors@4# consider the mammalian red blood cell motion in
the microcirculation environment to be analogous to the
squeezing of liquid-filled membrane systems between two
parallel plates.

There are several experimental methods which have been
reported for characterizing the deformation behavior of mi-
crocapsules. Jay and Edwards@5# have measured the elastic
properties of the membrane of microcapsules by using the
micropipette aspiration technique. Chang and Olbricht@6#
have studied the elastic properties of the membrane by ob-

serving the motion and deformation of a synthetic, liquid-
filled capsule~diameter about 2 to 4 mm! that was freely
suspended in a hyperbolic extensional flow. However, this
method has not been applied to microcapsules. Recently,
Zhang, Saunders, and Thomas@7# have measured the burst-
ing strength of microcapsules by using a micromanipulation
technique which squeezes a single microcapsule between
two platens. Since the relative position of the moving platens
cannot be accurately determined by this route, a detailed
study of the deformation behavior of the microcapsules is
currently difficult using this method.

A suitable experimental technique and associated theoreti-
cal models which permit the simultaneous study of the elas-
ticity, the tension distribution and bursting strength of the
microcapsule membrane, and the pressure difference across
the membrane are reported here. The experimental technique
which involves the compression of individual microcapsules
between two parallel plates has been developed to directly
measure the force imposed on a single microcapsule and its
corresponding compressive displacement. A visual system
which allows for the investigation of the corresponding ma-
jor geometric deformational parameter, such as lateral exten-
sion, as well as failure phenomena has been incorporated.
Through the quantitative analysis of the interrelationships
between the force and the displacement, as well as the pre-
diction of the geometric deformational parameters, the re-
quired physical information has been obtained.

Several investigators have theoretically modeled the con-
tact mechanics of spherical nonlinear membranes. Feng and
Yang@8# considered the problem of the deformations and the
stresses in an inflated nonlinear elastic spherical membrane
compressed between two frictionless rigid plates. Lardner
and Pujara@9# extended the analysis to a membrane filled
with an incompressible fluid and were able to accurately pre-
dict the deformation of the sea-urchin egg, compared with
the experimental results which were previously reported by
Yoneda@10#. Taber@11# has carried out experimental work
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and proposed a similar theoretical model which included the
wall bending moment in the governing mechanisms of the
compression for fluid-filled spherical shells by rigid indent-
ers. The present paper adapts these analyses for the interpre-
tation of the experimental data to be described.

II. EXPERIMENT

A. Experimental arrangement

The primary functions of the instrument@12# were to pro-
vide a capability to simultaneously measure both the ap-
proach and the resultant forces, while compressing a small
single sphere between parallel glass on other platens. Optical
viewing of the deforming particle in a vertical plane pro-
vided a reasonable estimate of the central lateral extension of
the particle and a much less accurate measurement of the
contact area. The instrument system is schematically shown
in Fig. 1 and is based around an inverted optical microscope
~Wilovert S, Wetzlar Ltd., Germany!. Attached to the micro-
scope stage~Z plane! was a microstepper motor controlled
motion stage~PTS1000, Photon Control Ltd., England! ca-
pable of discrete microsteps of less than 100 nm. A small
horizontal arm on which was mounted a very sensitive force
transducer~BG-10, Kulite Ltd., USA! with a force resolution
better than 1025 N and a maximum force capability of 1021

N was attached to the motion stage. The instrument had a
force and a displacement resolution of 10mN and 0.1mm,
respectively.

On the lower face of this transducer arm was attached a
small flat glass platen~2 mm diameter! for the purpose of
deforming the sample. The force transducer signal was am-
plified and filtered using a strain gauge amplifier~369TA,
Fyde Ltd., UK!. The absolute position of the platen was
monitored with an optically encoded displacement trans-
ducer~MT25B, Heidenhain Ltd., Germany! which resolved a
vertical displacement of 100 nm over a 25 mm range. The
entire instrument system was computer controlled using a
purpose written software. The experiments were conducted
in the temperature range 20–25 °C. The mechanical compo-
nents were supported upon an antivibration table.

During all the experiments a high resolution video camera
~TM 620, Pulnix Ltd., USA! connected to the microscope
allowed the microcapsule diameter to be measured during
the experiment.

Under large loads the cantilever beam of the force trans-
ducer may deflect sufficiently to cause a significant differ-
ence between the sensed imposed displacement and the ac-
tual imposed displacement. Routine calibration of the
instruments’ compliance, principally that of the force trans-
ducer, allowed the extent of this difference to be accurately
determined. All the experimental load-displacement curves
described in the current paper have been corrected for the
deflection of the force transducer.

B. Material

The microcapsules used in this current study were a
water-oil multiple emulsion drop contained within a thin
polymeric membrane. The membrane wall is, in this case,
made of a poly~urethane! elastomer. The diameter of the par-
ticles varied between 50 and 100mm and the wall thickness,
estimated by scanning electron microscopy following freeze
fracture, ranged between 1 and 2mm. These materials were
provided by David Brown of Zeneca Ltd, U.K. Further de-
tails of their preparation are described elsewhere@13#.

C. Experimental procedure

A liquid film, isotonic with the liquid contained within the
microcapsules, was placed in a petri dish beneath the micro-
scope lens. Microcapsules were randomly drawn into a mi-
cropipette and then carefully discharged into the petri dish. A
particular microcapsule was chosen at random. In order to
confirm that only one particle was in contact with the micro-
platen, the contact region was first examined using a low
magnification lens on the microscope. The microplaten was
then slowly driven up and down to find the initial contact
point between the microplaten and the selected microcap-
sule. When the microplaten and the microcapsule initially
touched, the microcapsule was slightly disturbed and this
effect was monitored in the video image of the microcapsule
shown on the video monitor. The microplaten was then
driven at a constant speed, about 2mm per second, during
the microcapsule compression. The imposed force and the
displacement of the squeezed microcapsule during loading
and unloading were automatically recorded through the data
acquisition system. Also, a video image sequence of the de-
formed shape of the microcapsule was recorded so that the
lateral extension could be determined after the experiment.
The maximum imposed displacement was gradually in-
creased until the bursting of the microcapsule was observed.

III. THE THEORETICAL ANALYSIS

It is well known, in the elastic deformation theory of
plates and shells, that the bending rigidity (D), or the flex-
ural rigidity, of a thin isotropic plate or a thin shell is pro-
portional to the cubic power of the wall thickness. Thus the
bending rigidity may be expressed as

D5
Eh̄3

~12n2!
, ~1!

FIG. 1. The schematic view of microupsetting instrument~not to
scale!.
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whereE is Young’s modulus,h̄ is the wall thickness, andn
is the Poisson ratio. In contrast, the extensional rigidity is
Eh̄, and proportional to the first power of the wall thickness.
When the wall thicknessh̄ is very small, the contribution to
the sensed rigidity from the bending rigidity is much smaller
than the contribution from the extensional rigidity@14#. Fur-
thermore, Taber’s@11# experiments and calculations for a
thick shell~the ratio of radius of thickness of approximately
6.0! demonstrated that when a point load was applied the
bending stress governs the behavior at small deformation
~the dimensionless approach was less than 20%!, but that the
membrane extensional stresses dominate at larger deforma-
tions. Since the microcapsules which were used in this study
have a high ratio of radius to thickness~about 16!; i.e., thin
wall systems, the response forces contributed from the bend-
ing moment may be reasonably neglected in the first in-
stance. This assumption will be further discussed in Sec.
IV A.

The constitutive equations~relationships between stress
and strain! used in this study to represent the behavior of the
microcapsules’ membranes are those for Mooney-Rivlin and
neo-Hookean materials which have a rubberlike nonlinear
elasticity @15,16#.

In the Mooney-Rivlin model the strain-energy function
W* of an isotropic incompressible material is

W*5C1~ I 123!1C2~ I 223!5C1@~ I 123!1b~ I 223!#,
~2!

whereC1 andC2 are the material constants with the dimen-
sions of stress,b5C2/C1 ; for a homogeneous and isotropic,
incompressible elastic materialC1 is equal to 6E. I 1 and I 2
are strain invariants which may be expressed in terms of the
principal stretch ratios in the meridional and circumferential
directions of the deformed surface,l1 andl2, and are

I 15l1
21l2

21
1

l1
2l2

2 , ~3!

I 25l1
2l2

21
1

l1
2 1

1

l2
2 . ~4!

Then, the principal stresses in the meridional and circumfer-
ential directions,s1 ands2 ~see below; Fig. 2!, respectively,
may be expressed as

s15l1

]W*

]l1
52C1l1l2S l1

l2
2

1

l1
3l2

3D ~11bl2
2!, ~5!

s25l2

]W*

]l2
52C1l1l2S l2

l1
2

1

l1
3l2

3D ~11bl1
2!. ~6!

For the configuration of this spherical membrane system,
the relationship between the stress resultants per unit length
of the deformed surface in the meridional and circumferen-
tial directions,T1 and T2, respectively, and the principal
stressess1, s2, may be expressed as

T15
hs1

l1l2
52hC1S l1

l2
2

1

l1
3l2

3D ~11bl2
2!, ~7!

T25
hs2

l1l2
52hC1S l2

l1
2

1

l1
3l2

3D ~11bl1
2!, ~8!

whereh is the initial thickness of the membrane.
A neo-Hookean material description may be seen as a

simplification of the Mooney-Rivlin formula by assumingb
is zero@16#. For a Mooney-Rivlin material the value ofb has
been taken, in the current study, as 0.1, as suggested by
Green and Adkins@17#.

Lardner and Pujara@9# derived two groups of governing
equations for two separate deformation regions: the plate-
membrane contact region and the non-contact deformation
region. The details of the derivation of these equations are
given elsewhere@8,9#. The final results for the cases shown
in Fig. 2 are summarized below.

Contact region

FIG. 2. Geometry for the contact problem for the half of a thin
wall spherical membrane, filled with an incompressible fluid, be-
tween large rigid plates@adapted from Feng and Yang’s original
paper@8# #. The spherical coordinates~r 0,Q,c! used for the descrip-
tion of the spherical membrane geometry before deformation and
also cylindrical coordinates~r,Q,h! which are used for the descrip-
tion of the deformed membrane after deformation.u is the angle
measured from the positive axis of symmetry to the outward normal
of the deformed membrane surface;r 0 is the initial radius of the
undeformed membrane;h̄ is the distance between the rigid plate
and the equator of the spherical membrane after deformation;r̄ is
the lateral extended radius of the deformed membrane.
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l185
l1

l2sinc
S f 3f 1D2S l12l2cosc

sinc D S f 2f 1D , ~9!

l285
l12l2cosc

sinc
~10!

and noncontact region

l185S d cosc2W sinc

sin2c D S f 2f 1D2SWd D S f 3f 1D , ~11!

d85W, ~12!

W85
l18W

l1
1

~l12W2!

d S T2T1D2
l1~l1

22W2!1/2Pr0
T1

,

~13!

where

f 15
]T1
]l1

52hC1~11bl2
2!S 1l2

1
3

l1
4l2

3D , ~14!

f 25
]T1
]l2

52hC1F S 3

l1
3l2

42
l1

l2
2D ~11bl2

2!

12bl2S l1

l2
2

1

l1
3l2

3D G , ~15!

f 35T12T252hC1Fl1

l2
2

l2

l1
2bS 1

l1
3l2

2
1

l1
3l2

3D G ,
~16!

and whereP is the pressure inside the deformed membrane
after contact; the primes indicate differentiation with respect
to c, the angular position reference in the undeformed
sphere; a schematic diagram of the half spherical membrane
before and after contact deformation is shown in Fig. 2. The
figure also shows the spherical coordinates~r 0,Q,c! used for
the description of the spherical membrane geometry before
contact and also cylindrical coordinates~r,Q,h! which are
used for the description of the deformed membrane after
contact. The variablesd andW are defined as

d5l2sinc, ~17!

W5d8. ~18!

The boundary conditions for this problem are

c50, l15l25l0 , ~19!

c5G, ~l1!contact5G~l1!noncontact, ~20!

c5G, ~l2!contact5GS d

sinG D
noncontact

, ~21!

c5G, h850 ~22!

c5
p

2
, d850, ~23!

whereG is the angle of the contact area; its definition is the
angular position, with reference to the undeformed mem-
brane, which is measured from the positive axis of symmetry
to the boundary between the contact region and the noncon-
tact region after deformation@8#.

Since the original boundary-value problem has been
transformed into an initial value problem, the governing
equations@Eqs. ~9!–~13!#, with their boundary conditions,
can be solved by a standard numerical scheme, the Runge-
Kutta method@18#. Extending the works of Feng and Yang
@8# and Lardner and Pujara@9#, an independent computer
algorithm was developed as described in Fig. 3. The calcu-
lation procedures of Feng and Young and Lardner and Pujara
both prescribed the angle of contact area~G! and then calcu-
lated the other parameters which included the distance be-
tween the rigid plate and the equator of the spherical mem-
brane after contact,h̄ ~see Fig. 2!. However, the angle of the
contact area has been proven to be difficult to measure accu-
rately by direct experimental observation in these micro-
scopic systems@10#. Hence it is appropriate to modify their
procedures so as to prescribeh̄ and then to calculate the

FIG. 3. The flow chart for the enhanced version of the algorithm
for solving the set of equations of the membrane model used in the
current study.
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other parameters. The assumption, suggested by Lardner and
Pujara, that the volume of encapsulated solution is constant
has been adopted in the current analysis. The flow chart of
the algorithm, applied in the current study, is presented in
Fig. 3.

IV. RESULTS AND DISCUSSIONS

The above theoretical analysis, combined with the corre-
sponding experimental data, provides a route for determining
the elastic modulus of the membrane~Sec. IV A!, the inter-
nal pressure~Sec. IV B!, the tension distribution on the
membrane~Sec. IV C!, and the geometric features of the
deformation~Sec. IV D!. By a comparison with the experi-
mental observations, the basic assumptions adopted in the
theory, outlined above, may be tested.

A. Elastic modulus of the membrane

The loading-unloading curve for a 65mm microcapsule
up to a 60% deformation@dimensionless approach;~com-
pressive displacement!/~initial diameter!# has been investi-
gated and is shown in Fig. 4. The dimensionless approach
parameter~a! comprises the distance between the rigid plate
and the equator of the spherical membrane after contact,h̄,
the stretch ratio of the initial inflation,ls , and the radius of
the undeformed microcapsule,r 0, and is of the form
12(h̄/r 0ls) @9#. Since in our case the liquid in the petri dish
was isotonic with the liquid contained in the microcapsules,
it is reasonable to assume that the initial inflation is zero; i.e.,
that ls51, although this condition is unproven. Based upon
optical observations during the loading process, the micro-
capsule started to burst when the deformation reached about
a value of 58% deformation@see Fig. 5~d!#. The unloading
curve, after the burst, shows that the reaction force is now

FIG. 4. The experimental loading and unloading~after bursting!
curve of the 65mm microcapsule. The bursting point is near 58%
dimensionless approacha @512(h̄/r 0ls)#.

FIG. 5. Photographs of the bottom view of the deformed micro-
capsule~approximately 65mm in diameter! for various dimension-
less approachesa; ~a! a50%, ~b! a520%, ~c! a540%, ~d!
a558%.

FIG. 6. The dimensionless experimental loading-unloading
curve ~deformation up to 40%! and theoretical predictions by the
membrane model with the Mooney-Rivlin material law. The param-
eter y5(F/C1hr0l s

2) is the dimensionless force and the quantity
12(h̄/r 0ls) is the dimensionless approach.ls is 1.0 andC1 is
16.08 MPa. The wall thickness (h) is taken as 2mm. The material
constantb is taken as 0.1.
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very small compared with the corresponding loading value,
especially at large deformations. This observation implies
that the reflex force contributed by the bending moment of
the wall, after rupture, is insignificant during the postrupture
deformations and this is consistent with the earlier assump-
tion of a mainly tensile membrane response; that is, the
bending contribution is negligible.

Experimental loading-unloading transverse compliance
curves are shown in Figs. 6 and 7. In these figures the force
F has been nondimensionalized to be in the dimensionless
form y5F/C1hr0l s

2. The theoretical predications based
upon the membrane model with Mooney-Rivlin and neo-
Hookean constitutive equations, combined with the mini-
mum least-squares~MLS! fitting to the experimental data,
are also shown in Figs. 6 and 7. The extensional rigidity of
the membrane,Eh, may be calculated to be 538 N m21 for a
neo-Hookean material and 536 N m21 for a Mooney-Rivlin
material, respectively, from the MLS fitting between the
theoretical predictions and experimental data. The difference
is small. Hence if the thickness of the elastomeric membrane
wall is assumed to be 2mm, then the elastic modulus of the
membrane can be calculated to be 2.69 MPa for a neo-
Hookean material and 2.68 MPa for a Mooney-Rivlin mate-
rial, respectively. This result, which shows no significant dif-
ference between the estimated Young modulus obtained by
the Mooney-Rivlin and the neo-Hookean laws, suggests that
the second term in the Mooney-Rivlin law,b~I 223!, may not
be important for the description of the deformation of these
elastomeric membranes. We may also note that a value of the
elastic modulus 2.69 MPa is a sensible one for this type of
polymeric membrane.

Compared with the experimental data, the theoretical cal-
culation of the loading-unloading curves obtained from the
membrane model with either the neo-Hookean material law
or the Mooney-Rivlin model are slightly underpredicted
when the deformation is below 15%. This difference may
arise from the fact that the bending moment still has influ-
ence, to some extent, when the deformation is small@11#. For
the intact microcapsules the force difference between loading
and unloading~shown in Figs. 6 and 7!, which is very small,
is consistent with the assumption that the transport of encap-
sulated solution, across the membrane, is insignificant during
the chosen time scale of the loading-unloading process. Fur-
thermore, it appears that the viscoelastic effects associated
with the deformation of the membrane, again within the cho-
sen time scale, are also negligible. The agreement between
theory and experiment, as well as the reasonable prediction
of the membrane elasticity, would suggest that the analyses
based on both Mooney-Rivlin and neo-Hookean constitutive
equations can be generally applied to the compressive defor-
mation of these polymer-bounded microcapsules. Moreover,
the close agreement between the theoretical predictions and
the experimental loading-unloading curves, as well as the
reasonable estimation of the membrane elasticity, would sug-
gest that the analysis based on the membrane model, associ-
ated with either the Mooney-Rivlin law or the neo-Hookean
constitutive equations, can be applied to the compressive de-
formation of polymeric membranes.

B. Internal pressure

The computed internal pressure versus deformation curve,
which is shown in Fig. 8, indicates a weakly nonlinear in-
crease of the internal pressure with the imposed deformation.
This predicted result is important not only for the preserva-
tion of the capsule integrity but also for the chemical release

FIG. 7. The dimensionless experimental loading-unloading
curve ~deformation up to 40%! and theoretical predictions by the
membrane model with neo-Hookean material law. The parameter
y5(F/C1hr0l s

2) is the dimensionless force and the quantity
12(h̄/r 0ls) is the dimensionless approach.ls is 1.0 andC1 is
16.14 MPa. The wall thickness (h) is taken as 2mm.

FIG. 8. Internal pressure versus deformation curve of a com-
pressive microcapsule. The assumed Young’s moduli of the mem-
brane are, respectively, 2.69 MPa for neo-Hookean material and
2.68 MPa for Mooney-Rivlin material.
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behavior of microcapsules. The computed bursting pressure
~the pressure at 58% dimensionless approach! is about 26
kPa. This implies a rupture at a nominal membrane strain of
about 10% in the radial direction. This rupture strain is rather
small for an elastomeric material; a value one order of mag-
nitude greater may have been anticipated. The nature of the
preparation of these membranes, a chemical reaction at a
liquid-liquid interface, will naturally produce many defects
in thickness and composition. Thus while it seems that the
membrane is not perfectly porous it may have many thin
regions or effective notches which reduce its toughness.

For the modeling of the release rate of encapsulated solu-
tions across the membrane under the deformation, Darcy’s
law @19#, which was derived on the assumption of laminar
flow through a cylindrical channel, may be applied to the
current case. Basically, this law supposes that the flux of the
liquid across a membrane is directly proportional to the pres-
sure difference across the wall, if the membrane is assumed
to be a porous medium and the permeability of the mem-
brane a constant. Hence the release rate of the solution for
the compressive microcapsules will nonlinearly increase
with the deformation due to the nonlinear increase of the
internal pressure. The microcapsules used in some applica-
tions, such as the time-release drug delivery and for the im-
mobilization of enzymes, are often required to maintain con-
stant release rates of the encapsulated solutions. Therefore
the above result is interesting and of crucial value in the
control of the performance of such deformed microcapsules.

C. Membrane tension

The membrane tension~the resultant per unit length of the
deformed surface! on the membrane can be predicted by the
theoretical model. If the elastic modulus of the membrane is
2.69 MPa, the calculated tension profile for the case of a

58% deformation~at rupture! is shown in Fig. 9. The result
shows that the tension in the membranes is not uniform but
increases with the angular position parameter~c!. On this
basis, the bursting point will always be located on the equa-
tor; the compressive loads are imposed from the two parallel
plates along the axis of symmetry. This predicted feature is
consistent with the experimental observations noted through
the image system@see Fig. 5~d!#. This prediction also shows
that, for the present case, the resultant stress in the deformed
circumferential direction,T2, is always larger than the stress
resultant in the deformed meridional,T1. The bursting
strength, the tension on the equator for 58% deformation, for
the microcapsule is computed as about 1.04 N cm21, which
is the stress resultant in the deformed circumferential direc-
tion at rupture.

D. Geometric features of the deformation

The simulated deformed external shapes of the microcap-
sule are shown in Fig. 10. These results show that, for large
imposed deformations, the noncontact region must be sig-
nificantly stretched in order to maintain a constant enclosed
volume. The predicted behavior has been identified by mea-
suring the dimensionless central extension@the lateral ex-
tended radius of the deformed microcapsule (r̄) normalized
by the initial radiusr 0# of the free surface from the micro-
scope images~shown in Fig. 5!. The comparison between the
values obtained from the experimental measurements and the
theoretical predictions is shown in Table I. The results show
that the theoretical predictions and the experimental mea-
surement are in good accord.

The contact area measurement has been a key experimen-
tal variable used in the evaluation of the theories. Though the
measurement of the area of contact has been proven to be
viable in large scale macroscopic experiments, it has proven
to be far more difficult at the microscopic scale. Due to the
diffraction limit, the resolution of conventional optical sys-
tems is, at best, 0.25mm. However, practically it can often

FIG. 9. Variation of the membrane tension with angular position
c for a 58% deformation; see Fig. 2. The Young’s moduli of the
membrane are, respectively, 2.69 MPa for neo-Hookean material
and 2.68 MPa for the Mooney-Rivlin system.T1 and T2 are the
stress resultants in the meridional and circumferential directions,
respectively.

FIG. 10. The simulated deformed shapes of the compressive
microcapsule~ls51, b50.1! for 20%, 40%, and 60% deformation
in the current study; also see Table I.
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be difficult to resolve dimensions of less than 1mm and other
workers have also noted that the precise measurement of the
contact area for microscopic systems has proven to be intrac-
table@20#. In the current case, for a 65mm microcapsule, at
20% deformation, the radius of the contact area is about 16
mm according to the theoretical prediction~Fig. 10!. Hence
the resolution of optical system would result in an error pos-
sibly as large as about 6%. Yoneda@10# has attempted to
directly measure the contact area of compressed sea-urchin
eggs~about 120mm! between two plates by the use of pho-
tomicrographs taken from the side view. He pointed out that
it would be nearly impossible to detect a very narrow gap
between the egg and the plate, using optical methods, and
this would cause a major overestimation of the area of con-
tact. Of course, these measurements may be accurately re-
solved by a new method; for example, x ray imaging is a
possibility.

V. CONCLUSIONS

A model to describe the deformation of a liquid-filled
spherical elastic membrane microcapsule with either a

Mooney-Rivlin law or a neo-Hookean constitutive equation
has been verified. This model allows correlations to be
made using the experimental microcompression data
provided for the determination of the elasticity and the
tension distribution and bursting strength of the membrane as
well as the pressure difference across the membrane. The
feature where the internal pressure nonlinearly increases
with the compressive deformation may be an extremely im-
portant result for the usage of microcapsules as drug, or ac-
tive species, delivery systems. The characterization of the
major geometric deformational parameters has been made,
and provides a confirmation of the predictive capacity of the
theoretical model.
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TABLE I. The comparison of the experimental and theoretical dimensionless central laternal extension
versus dimensionless approaches.

Dimensionless approach
~%!

Dimensionless central laternal extension

Theoretical prediction Experimental measurements

20 1.045 1.05660.008
40 1.150 1.15260.010
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